Controllable Synthesis of Monodisperse Er3+-Doped Lanthanide Oxyfluorides Nanocrystals with Intense Mid-Infrared Emission
نویسندگان
چکیده
Monodisperse lanthanide oxyfluorides LnOF (Ln = Gd, Y) with mid-infrared emissions were controllably synthesized via a mild co-precipitation route and a subsequent heat-treatment. The detailed composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that monodisperse GdOF:Er3+ were nano-riced shape with length about 350 nm and width about 120 nm, while the quasi-spherical YOF:Er3+ were uniform nanocrystals with an average size around 100 nm. The influence of calcination temperature on the size and phase transition of LnOF nanocrystals was also investigated. The photoluminescence (PL) spectra indicated that the 2.7 μm emission of Er3+ had achieved in both GdOF and YOF nanocrystals, which were calcined at different temperatures. In addition, the decay time of both 4I13/2 and 4I13/2 energy levels corresponding to Er3+ in YOF nanocrystals were also studied in detail. The results suggested that both rice-shaped GdOF nanocrystals and YOF nanocrystals could provide suitable candidate materials for nanocrystals-glass composites, which could be a step forward to the realization of mid-infrared laser materials.
منابع مشابه
Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals
The morphology of hexagonal phase NaYF4:Er(3+) nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er(3+) nanocrystals for the first time. And the MIR emission of NaYF4:Er(3+) nano...
متن کاملSpectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials
Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra w...
متن کاملBi-functional NaLuF4:Gd3+/Yb3+/Er3+ nanocrystals: hydrothermal synthesis, optical and magnetic properties
Magnetic-fluorescent lanthanide doped sodium lutetium fluoride (NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal method by varying concentration of Gd3+. Powder X-ray powder diffraction (PXRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), p...
متن کاملNaYF4:Er3+,Yb3+/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K
The rapid development of nanomaterials with unique size-tunable properties forms the basis for a variety of new applications, including temperature sensing. Luminescent nanoparticles (NPs) have demonstrated potential as sensitive nanothermometers, especially in biological systems. Their small size offers the possibility of mapping temperature profiles with high spatial resolution. The temperatu...
متن کاملRegulating Mid-infrared to Visible Fluorescence in Monodispersed Er3+-doped La2O2S (La2O2SO4) Nanocrystals by Phase Modulation
Rare earth doped mid-infrared (MIR) fluorescent sources have been widely investigated due to their various potential applications in the fields of communication, chemical detecting, medical surgery and so forth. However, with emission wavelength extended to MIR, multiphonon relaxation process that strongly quenched the MIR emission is one of the greatest challenges for such practical applicatio...
متن کامل